
A

Major Project

On

COMPUTER AUTOMATION USING GESTURE
RECOGNITION AND MEDIAPIPE

(Submitted in partial fulfillment of the requirements for the award of degree)

BACHELOR OF TECHNOLOGY

In

COMPUTER SCIENCE AND ENGINEERING

BY

Aditya Madhira (187R1A05F9)

Naresh Mote (187R1A05G6)

Under the Guidance of

V. Naresh Kumar

Assistant professor

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

(Accredited by NAAC, NBA, Permanently Affiliated to JNTUH, Approved by AICTE, New Delhi)

Recognized Under Section 2(f) & 12(B) of the UGCAct.1956,

Kandlakoya (V), Medchal Road, Hyderabad-501401.

2018-22

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

CERTIFICATE

This is to certify that the project entitled “COMPUTER AUTOMATION USING

GESTURE RECOGNITION AND MEDIAPIPE” being submitted by ADITYA MADHIRA

(187R1A05F9) & NARESH MOTE (187R1A05G6) in partial fulfillment of the requirements for

the award of the degree of B.Tech in Computer Science and Engineering to the Jawaharlal Nehru

Technological University Hyderabad, is a record of bonafide work carried out by them under our

guidance and supervision during the year 2021-22.

The results embodied in this thesis have not been submitted to any other University or Institute for

the award of any degree or diploma.

Mr. V. NARESH KUMAR Dr. A. Raji Reddy

Assistant Professor DIRECTOR

INTERNAL GUIDE

Dr. K. Srujan Raju EXTERNAL EXAMINER

HOD

Submitted for viva voice Examination held on

ACKNOWLEGDEMENT

Apart from the efforts of us, the success of any project depends largely on the

encouragement and guidelines of many others. We take this opportunity to express our gratitude

to the people who have been instrumental in the successful completion of this project.

We take this opportunity to express my profound gratitude and deep regard to my

guide Mr. V. Naresh Kumar, Assistant Professor for his exemplary guidance, monitoring and

constant encouragement throughout the project work. The blessing, help and guidance given by

him shall carry us a long way in the journey of life on which we are about to embark.

We also take this opportunity to express a deep sense of gratitude to Project Review

Committee (PRC) Mr. J. Narasimha Rao, Dr. T. S. Mastan Rao, Mr. A. Uday Kiran,

Mr. A. Kiran Kumar, Mrs. G. Latha for their cordial support, valuable information and

guidance, which helped us in completing this task through various stages.

We are also thankful to Dr. K. Srujan Raju, Head, Department of Computer Science

and Engineering for providing encouragement and support for completing this project

successfully.

We are obliged to Dr. A. Raji Reddy, Director for being cooperative throughout the course

of this project. We also express our sincere gratitude to Sri. Ch. Gopal Reddy, Chairman for

providing excellent infrastructure and a nice atmosphere throughout the course of this project.

The guidance and support received from all the members of CMR Technical Campus

who contributed to the completion of the project. We are grateful for their constant support and

help.

Finally, we would like to take this opportunity to thank our family for their constant

encouragement, without which this assignment would not be completed. We sincerely

acknowledge and thank all those who gave support directly and indirectly in the completion of this

project.

 ADITYA MADHIRA (187R1A05F9)

NARESH MOTE (187R1A05G6)

i

ABSTRACT

Human Computer Interaction has been a multidisciplinary field of study focusing

on the design of computer technology and, in particular, the interaction between

humans (the users) and computers. There are multiple ways to interact with a

computer and are not limited to physical hardware devices. Gesture recognition is a

computing process that attempts to recognize and interpret human gestures through

the use of mathematical algorithms. Gesture recognition is not limited to just human

hand gestures, but rather can be used to recognize everything from head nods to

different walking gaits. Computer automation is another area where scientists are

trying to automate mundane, time taking tasks. Basic tasks like “Shutting down”,

“Opening apps”, “Visiting a particular URL” are tedious and can be automated.

Utilizing the power of “Hand Tracking” and “Gesture Recognition”, we can use our

hands to control our system without ever touching mouse or keyboard.

ii

LIST OF FIGURES

FIGURE NO FIGURE NAME PAGE NO

Figure 2.1 OpenCV 4

Figure 3.1 Project Architecture 9

Figure 3.2 PyQt 11

Figure 3.3 Hand Tracking Using
Mediapipe

12

Figure 3.4 Hand Landmarks 13

Figure 3.5 Transfer Learning 14

Figure 3.6 CNN Architecture 14

Figure 3.7 Automation Of Tasks 15

Figure 3.8 Use Case Diagram 16

Figure 3.9 Class Diagram 17

Figure 3.10 Sequence Diagram 18

Figure 3.11 Activity Diagram 19

LIST OF SCREENSHOTS

iii

SCREENSHOT NO. SCREENSHOT NAME PAGE NO.

Screenshot 5.1 Upload Name GUI 34

Screenshot 5.2 Upload Image GUI 34

Screenshot 5.3 Upload Image to Firebase 35

Screenshot 5.4 Facial Encodings Stored 36

Screenshot 5.5 Gesture GUI 36

Screenshot 5.6 Gesture Data Stored 37

Screenshot 5.7 Facial Match Not Found 37

Screenshot 5.8 Rock On Gesture 38

Screenshot 5.9 Fist Gesture 38

Screenshot 5.10 Thumbs Up Gesture 39

Screenshot 5.11 Stop Gesture 39

TABLE OF CONTENTS

iv

ABSTRACT i

LIST OF FIGURES ii

LIST OF SCREENSHOTS iii

1. INTRODUCTION 1

1.1 PROJECT SCOPE 1

1.2 PROJECT PURPOSE 1

1.3 PROJECT FEATURES 1

2. SYSTEM ANALYSIS 2

2.1 PROBLEM DEFINITION 2

2.2 EXISTING SYSTEM 2

2.2.1 LIMITATIONS OF THE EXISTING SYSTEM 5

2.3 PROPOSED SYSTEM 5

2.3.1 ADVANTAGES OF PROPOSED SYSTEM 5

2.4 FEASIBILITY STUDY 6

2.4.1 ECONOMIC FESIBILITY 6

2.4.2 TECHNICAL FEASIBILITY 6

2.4.3 BEHAVIOURAL FEASIBILITY 7

2.5 HARDWARE & SOFTWARE REQUIREMENTS 8

2.5.1 HARDWARE REQUIREMENTS 8

2.5.2 SOFTWARE REQUIREMENTS 8

3. ARCHITECTURE 9

3.1 PROJECT ARCHITECTURE 9

3.2 DESCRIPTION 9

3.3 USECASE DIAGRAM 16

3.4 CLASS DIAGRAM 17

3.5 SEQUENCE DIAGRAM 18

3.6 ACTIVITY DIAGRAM 19

4. IMPLEMENTATION 20

4.1 SAMPLE CODE 20

5. SCREENSHOTS 34

6. TESTING 40

v

 6.1 INTRODUCTION TO TESTING 40

 6.2 TYPES OF TESTING 40

 6.2.1 UNIT TESTING 40

 6.2.2 INTEGRATION TESTING 40

 6.2.3 FUNCTIONAL TESTING 41

 6.3 TEST CASES 41

 6.3.1 UPLOADING DATASET 41

 6.3.2 TEST CASES 42

7. CONCLUSION & FUTURE SCOPE 43

 7.1 PROJECT CONCLUSION 43

 7.2 FUTURE SCOPE 44

8. BIBILOGRAPHY 45

 8.1 GITHUB REPOSITORY LINK 45

 8.2 REFERENCES 45

 8.3 WEBSITES 46

9. JOURNAL

1. INTRODUCTION

CMRTC 1

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

1. INTRODUCTION

1.1 PROJECT SCOPE

This project is titled as “Computer automation using gesture recognition and

mediapipe”. This software provides facility to use hand gestures to automate few

computer tasks quickly. This project uses pre trained “convolutional neural network”

to predict the gesture and mediapipe to perform hand tracking.

1.2 PROJECT PURPOSE

This has been developed to automate mundane computer tasks which require

quickly and efficiently using gestures. The user can assign tasks to gestures which

later can be used to perform few tasks. Mediapipe ensures constant tracking of both

left and right hand for seamless performance.

1.3 PROJECT FEATURES

The main feature of this project is ‘Gesture Recognition’ and ‘Mediapipe’.

MediaPipe offers cross-platform, customizable ML solutions for live and streaming

media. End-to-End acceleration: Built-in fast ML inference and processing

accelerated even on common hardware. Build once, deploy anywhere: Gesture

recognition is doneusing a pre trained CNN, A convolutional neural network (CNN) is

a type of artificial neural network used in image recognition and processing that is

specifically designed to process pixel data.

2. SYSTEM ANALYSIS

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 2

2. SYSTEM ANALYSIS

SYSTEM ANALYSIS

System Analysis is the important phase in the system development process. The

System is studied to the minute details and analyzed. The system analyst plays an

important role of an interrogator and dwells deep into the working of the present system.

In analysis, a detailed study of these operations performed by the system and their

relationships within and outside the system is done. A key question considered here is,

“what must be done to solve the problem?” The system is viewed as a whole and the

inputs to the system are identified. Once analysis is completed the analyst has a firm

understanding of what is to be done.

2.1 PROBLEM DEFINITION

Motivated by different real-world applications, researchers have considered a

wide range of problems over a variety of different types of corpora. We now examine

the key concepts involved in these problems. This discussion also serves as a loose

grouping of the major problems, where each group consists of problems that are suitable

for similar treatment as learning tasks. One set of problems share the following general

character: a food image, where in it is assumed that as an unknown food image, classify

the image into respective food recipe and also predict food ingredients present int the

food recipe.

2.2 EXISTING SYSTEM

In the existing system methods and algorithms are not that much accurate and

requires complex code or physical input which makes the idea of non-physical

computer interaction redundant.

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 3

PYTHON MODULES:

Python is a high-level, interpreted, general-purpose programming language. Its

design philosophy emphasizes code readability with the use of significant indentation.

Python has many modules for automation of tasks but it still requires physical contact

with the computer. Modules alone cannot provide a fast, contactless automation tool

and need to be utilized in another way.

SELENIUM:

Selenium is an open-source umbrella project for a range of tools and libraries

aimed at supporting browser automation. It provides a single interface that lets you

write test scripts in programming languages like Ruby, Java, NodeJS, PHP, Perl,

Python, and C#, among others. Selenium can be useful for automation of browser

related tasks but is limited to it. Like, python modules it needs to be combined for

efficient utilization.

OpenCV:

OpenCV is a library of programming functions mainly aimed at real-time

computer vision. Originally developed by Intel, it was later supported by Willow

Garage then Itseez. The library is cross-platform and free for use under the open-source

Apache 2 License.

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

4

CMRTC

Gesture recognition can be performed with a ‘CNN’ model trained on ‘dataset’ and

‘OpenCV’. This method lacks ‘Hand Tracking’ capabilities. Hand tracking can also be

performed using ‘Object Detection Algorithms’ like ‘Faster R-CNN’, ‘Single Shot

Detector’. This approach requires huge data and GPU for training and deployment.

Figure 2.1: OpenCV

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 5

2.2.1 LIMITATIONS OF EXISTING SYSTEM

• Use of python modules requires executing the code for automation. Hence, use of
hand gestures might be redundant.

• Use of OpenCV requires complex code to perform hand tracking.

• Accuracy of hand tracking can be low.

• Manual automation using python can be time consuming.

.

2.3 PROPOSED SYSTEM

In the proposed system, we plan on using ‘Mediapipe’. Mediapipe is a cross-

platform library developed by Google that provides amazing ready-to-use ML

solutions for computer vision tasks. Mediapipe is currently the easiest way to achieve

fast “Hand Tracking. With Mediapipe we can also detect and mark, ‘hand landmarks.

Along with mediapipe, a trained neural net is used for “Gesture Recognition”.

Combining both, we get a “hand tracking” and “Gesture Recognizing” tech. Each

gesture can be assigned a task, i.e., opening app, shutting down the system. Using

python modules, combined with the above tech, we can perform automation of tasks

using gestures.

2.3.1 ADVANTAGES OF THE PROPOSED SYSTEM

• In mediapipe Object localization is temporally consistent with the help of tracking,

meaning less jitter is observable across frames.

• Mediapipe provides more accurate hand tracking when compared to OpenCV.

• MediaPipe offers cross-platform, customizable ML solutions for live and streaming
media.

• Pre-defined and changeable gesture – task mapping.

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 6

2.4 FEASIBILITY STUDY

The feasibility of the project is analyzed in this phase and business proposal is

put forth with a verygeneral plan for the project and some cost estimates. During system

analysis the feasibility studyof the proposed system is to be carried out. This is to ensure

that the proposed system is not a burden to the company. Three key considerations

involved in the feasibility analysis.

• Economic Feasibility

• Technical Feasibility

• Social Feasibility

2.4.1 ECONOMIC FEASIBILITY

Development of this application is highly economically feasible. The

organization needed not spend much money for the development of the system

already available. The only thing is to be done is making an environment for the

development with an effective supervision. If we are doing so, we can attain the

maximum usability of the corresponding resources. Even after the development, the

organization will not be in condition to invest more in the organization. Therefore, the

system is economically feasible.

2.4.2 TECHNICAL FEASIBILITY

We can strongly say that it is technically feasible, since there will not be much

difficulty in getting required resources for the development and maintaining the system

as well. All the resources needed for the development of the software as well as the

maintenance of the same is available in the organization here we are utilizing the

resources which are available already.

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 7

2.4.3 BEHAVIORAL FEASIBILITY

Whatever we think need not be feasible. It is wise to think about the feasibility

of any problem we undertake. Feasibility is the study of impact, which happens in the

organization by the development of a system. The impact can be either positive or

negative. When the positives nominate the negatives, then the system is considered

feasible. Here the feasibility study can be performed in two ways such as technical

feasibility and Economical Feasibility.

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 8

2.5 HARDWARE & SOFTWARE REQUIREMENTS

2.5.1 HARDWARE REQUIREMENTS:

Hardware interfaces specifies the logical characteristics of each interface

between the software product and the hardware components of the system. The

following are some hardware requirements.

 Processor : Minimum Intel i5 @CPU 2.9GHz

 Hard Disk : 16 GB and Above.

 RAM: 8 GB and Above

 Devices: HD webcam

2.5.2 SOFTWARE REQUIREMENTS:

Software Requirements specifies the logical characteristics of each interface and

software components of the system. The following are some software requirements.

 Operating system: Windows 10 or later

 Languages: Python

 Framework / Modules: CMake, dlib, Mediapipe

 IDE: PyCharm

3. ARCHITECTURE

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 9

3. ARCHITECTURE

3.1 PROJECT ARCHITECTURE

This project architecture shows the procedure followed for automation using

gestures with facial recognition as authentication system.

Figure 3.1: Project Architecture

3.2 DESCRIPTION

The project has been classified into four modules (or stages) in a sequential order

This modular approach of the project is shown below sequentially.

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 10

Module 1: FACIAL AUTHENTICATION / FACIAL ENCODING

 A facial authentication system is a technology capable of matching a human

face from a digital image or a video frame against a database of faces.

 A face encoding is basically a way to represent the face using a set of 128

computer-generated measurements. Two different pictures of the same person

would have similar encoding and two different people would have totally

different encoding.

 Face_recognition is a python module which can recognize and manipulate

faces from Python or from the command line and is the world's simplest face

recognition library.

 For users who are signing up, a new pic should be uploaded with a clear

visibility of face. The module generates a 128 vector of facial key points. This

vector or encoding is used to match and compare faces. The same comparison

is applied during login.

Module 2: SETTING OF GESTURES:

 A gesture is a movement that you make with a part of your body, especially

your hands, to express emotion or information. Gestures are the main concept

of this project as they are used to perform automation of tasks.

 A ‘GUI’ window has been developed by using ‘’PyQt5’ python module. It is a

Python interface for Qt, one of the most powerful, and popular cross-platform

GUI library. PyQt5 is a blend of Python programming language and the Qt

library. The user is given option to assign pre-defined tasks to pre-defined

gestures. This can be done by both new and authenticated users.

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 11

Figure 3.2: PyQt

Module 3: HAND TRACKING USING MEDIAPIPE

 MediaPipe is a Framework for building machine learning pipelines for

processing time-series data like video, audio, etc. This cross-platform

Framework works in Desktop/Server, Android, iOS, and embedded devices

like Raspberry Pi and Jetson Nano.

 MediaPipe Hands is a high-fidelity hand and finger tracking solution. It

employs machine learning (ML) to infer 21 3D landmarks of a hand from just

a single frame. Whereas current state-of-the-art approaches rely primarily on

powerful desktop environments for inference, our method achieves real-time

performance on a mobile phone, and even scales to multiple hands.

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 12

Palm Detection

 To detect initial hand locations, a single-shot detector model optimized for

mobile real-time uses in a manner similar to the face detection model

in MediaPipe Face Mesh. Detecting hands is a decidedly complex task: our lite

model and full model have to work across a variety of hand sizes with a large

scale span (~20x) relative to the image frame and be able to detect occluded

and self-occluded hands.

Hand Landmark Detection

 After the palm detection over the whole image our subsequent hand

landmark model performs precise keypoint localization of 21 3D hand-knuckle

coordinates inside the detected hand regions via regression, that is direct

coordinate prediction. The model learns a consistent internal hand pose

representation and is robust even to partially visible hands and self-occlusions.

Figure 3.3 Hand tracking Using Mediapipe

https://arxiv.org/abs/1512.02325
https://google.github.io/mediapipe/solutions/face_mesh.html
https://github.com/google/mediapipe/tree/master/mediapipe/modules/palm_detection/palm_detection_lite.tflite
https://github.com/google/mediapipe/tree/master/mediapipe/modules/palm_detection/palm_detection_lite.tflite
https://github.com/google/mediapipe/tree/master/mediapipe/modules/palm_detection/palm_detection_full.tflite
https://github.com/google/mediapipe/tree/master/mediapipe/modules/hand_landmark/hand_landmark_full.tflite

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 13

Figure 3.4: Hand Landmarks

Module 4: RECOGNITION OF GESTURES

 Gesture recognition is the fast-growing field in image processing and artificial

technology. The gesture recognition is a process in which the gestures or

postures of human body parts are identified and are used to control computers

and other electronic appliances.

 While user’s hand is being tracked, user can perform predefined gestures to

automate. A pre-defined ‘Convolutional Neural Network’ is used for

recognition of the gesture.

Pre-Trained CNN

 pre-trained model is a model created by someone else to solve a similar

problem. Instead of building a model from scratch to solve a similar problem,

you use the model trained on other problem as a starting point.

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 14

Figure 3.5: Transfer Learning

Figure 3.6: CNN Architecture

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 15

Module 5: AUTOMATION

 Automation is the use of technology to accomplish a task with as little human

interaction as possible. In computing, automation is usually accomplished by a

program, a script, or batch processing. For example, a website operator may

write a script to parse the logs of the website traffic and generate a report.

 When the gesture is recognized by the model which was pre trained, the

associated task will be performed by the computer with utilization of python

modules, selenium driver etc.

Figure 3.7: Automation of Tasks

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 16

3.3 USE CASE DIAGRAM

A use case is a set of scenarios that describing an interaction between a user and a

system. A use case diagram displays the relationship among actors and use cases. The

two main components of a use case diagram are use cases and actors. In this diagram

we have multiple actors interacting with the system.

Figure 3.8 : Use Case Diagram

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 17

3.4 CLASS DIAGRAM

Class diagrams model social organization and its contents using design elements

like classes, packages, and objects, thereby describing various objects used during a

system and their relationships.” They define the cognitive, requirement, and

functionality paradigms when developing a system by illustrating the classes in the

program, attributes, functions of each class, and the relationship that exists between

each class.

Figure 3.9: Class Diagram

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

3.5 SEQUENCE DIAGRAM

Sequence diagrams in UML shows how object interact with each other and the order

those interactions occur. It’s important to note that they show the interactions for a

particular scenario. The processes are represented vertically and interactions are show

as arrows. This article explains the purpose and the basics of Sequence diagrams.

Figure 3.10: Sequence Diagram

CMRTC 18

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

3.6 ACTIVITY DIAGRAM

It describes about flow of activity states.

Figure 3.11: Activity Diagram

CMRTC 19

4. IMPLEMENTATION

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 20

4. IMPLEMENTATION

4.1 SAMPLE CODE

Main.py

import time
import sys
import face_recognition
import cv2
from firebase_admin import credentials,initialize_app,firestore
import firebase_admin
import numpy as np
from PyQt5.QtWidgets import QApplication

import upimg
import gestset
import automate

#getting custom gestures stored in firebase
def getgest(uname):

doc_ref = db.collection(u'Gests').document(uname)
doc = doc_ref.get()
tempd=doc.to_dict()
myl=[]
myl.append(tempd['Thumbs up'])
myl.append(tempd['Thumbs Down'])
myl.append(tempd['Stop'])
myl.append(tempd['Rock'])

return myl

class Signup():
def signup(self):

app = QApplication(sys.argv)
window = upimg.TakeNamewin()
window.show()
app.exec()
val = window.return_val()

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 21

app.quit()
newapp = QApplication(sys.argv)
newwin = upimg.UploadWindow(val)
newwin.show()
newapp.exec_()
newapp.quit()
gestapp = QApplication(sys.argv)
gestwin = gestset.SetGesturewindow(val)
gestwin.show()
gestapp.exec_()
gestapp.quit()

#####get custom gestures
myl = getgest(val)
automate.startnewcap(myl)

class Login():
known_fe = []
known_fn = []

def changeformat(self,value):

newl = []
li = list(value.split(" "))
li[0] = li[0].replace("[", "")
li[-1] = li[-1].replace("]", "")

for i in li:
if i.strip():

i = float(i)
newl.append(i)

final = np.array(newl)
return final

def getencodings(self):

users_ref = db.collection(u'localdb')
docs = users_ref.stream()
try:

for doc in docs:
self.known_fn.append(doc.id)
d = doc.to_dict()
final = self.changeformat(d['value'])
self. known_fe.append(final)

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 22

def login(self):
print("here1")

self.getencodings()
print('here2')
if len(self.known_fe) == 0:

print("no users")
else:

video_capture = cv2.VideoCapture(0)

patience = 0

gotit = 0

username = ""

Initialize some variables
face_locations = []
face_encodings = []
face_names = []
process_this_frame = True

while True:

Grab a single frame of video
ret, frame = video_capture.read()

Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

Convert the image from BGR color (which OpenCV uses) to RGB color (which

face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]

if process_this_frame:
Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)

face_encodings = face_recognition.face_encodings(rgb_small_frame,

face_locations)

face_names = []
for face_encoding in face_encodings:

See if the face is a match for the known face(s)

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 23

Or instead, use the known face with the smallest distance to the new face face_distances =

face_recognition.face_distance(self.known_fe, face_encoding)
best_match_index = np.argmin(face_distances)if
matches[best_match_index]:
name = self.known_fn[best_match_index]

face_names.append(name)if len(face_names) ==
0:
passelse:
if face_names[0] == "No Match":patience = patience + 1
if (patience == 15):
print("did not find a match")break

else:
username = face_names[0]gotit = 1

cv2.putText(frame, "press 'r' to sign up", (10,
20),cv2.FONT_HERSHEY_DUPLEX, 1.0, (255, 255,
255), 1)

process_this_frame = not process_this_frame# Display the

results
for (top, right, bottom, left), name in zip(face_locations, face_names):
Scale back up face locations since the frame we detected in was scaled to
1/4 size

top *= 4
right *= 4
bottom *= 4
left *= 4
Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), 2)

Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0, 0, 255),cv2.FILLED)
cv2.putText(frame, name, (left + 6, bottom - 6),

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 24

Display the resulting image
cv2.imshow('Video', frame)

if (gotit == 1): time.sleep(1)
video_capture.release()
cv2.destroyAllWindows() myl =
getgest(username)
automate.startnewcap(myl)

key = cv2.waitKey(1)if key ==
ord('q'):

break
elif key == ord('r'):

video_capture.release()
cv2.destroyAllWindows()obj = Signup()
obj.signup()
break

video_capture.release()
cv2.destroyAllWindows()

loginobj=Login()
loginobj.login()

Upimg.py

import sys
from PyQt5.QtWidgets import QApplication, QLabel, QFileDialog, QAction,QLineEdit
from PyQt5.QtWidgets import *
from PyQt5.QtGui import QPixmap
import face_recognition
import firebase_admin
from firebase_admin import credentials,initialize_app,firestore
import cv2
import numpy as np

username=""

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 25

class UploadWindow(QMainWindow):

myimagepath=""

def init (self, username,parent = None):
super(UploadWindow, self). init (parent)
self.setuname=username

menubar = self.menuBar()
fileMenu = menubar.addMenu('File')
editMenu = menubar.addMenu('Edit')
upload=menubar.addMenu('Upload ')
self.resize(500, 500)

openAction = QAction('Open Image', self)
openAction.triggered.connect(self.openImage)
fileMenu.addAction(openAction)

uploadaction=QAction('upload to mongo',self)
uploadaction.triggered.connect(self.upload)
upload.addAction(uploadaction)

closeAction = QAction('Exit', self)
closeAction.triggered.connect(self.close)
fileMenu.addAction(closeAction)
self.label = QLabel()
self.setCentralWidget(self.label

def openImage(self):
imagePath, _ = QFileDialog.getOpenFileName()
pixmap = QPixmap(imagePath)
self.label.setPixmap(pixmap)
self.resize(pixmap.size())
self.adjustSize()
self.myimagepath=imagePath

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 26

def upload(self):
self.tempimg=face_recognition.load_image_file(self.myimagepath)
self.enc=face_recognition.face_encodings(self.tempimg)[0]
self.arrep=np.array_str(self.enc)
self.db.collection(u'localdb').document(self.setuname).set({

'value':self.arrep,
})

class TakeNamewin(QDialog):

constructor
def init (self):

super(TakeNamewin, self). init ()

setting window title
self.setWindowTitle("Python")

setting geometry to the window
self.setGeometry(100, 100, 300, 400)

creating a group box
self.formGroupBox = QGroupBox("name Form")

creating spin box to select age

creating a line edit

self.nameLineEdit = QLineEdit()

calling the method that create the form
self.createForm()

creating a dialog button for ok and cancel
self.buttonBox = QDialogButtonBox(QDialogButtonBox.Ok |

QDialogButtonBox.Cancel)

adding action when form is accepted
self.buttonBox.accepted.connect(self.getInfo)

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 27

adding action when form is rejected
self.buttonBox.rejected.connect(self.reject)

creating a vertical layout
mainLayout = QVBoxLayout()

adding form group box to the layout
mainLayout.addWidget(self.formGroupBox)

adding button box to the layout
mainLayout.addWidget(self.buttonBox)

setting lay out
self.setLayout(mainLayout)

get info method called when form is accepted
def getInfo(self):

closing the window
self.close()

create form method
def createForm(self):

creating a form layout
layout = QFormLayout()

adding rows
for name and adding input text
layout.addRow(QLabel("Name"), self.nameLineEdit)

setting layout
self.formGroupBox.setLayout(layout)

def return_val(self):

return self.nameLineEdit.text()

Gestset.py

import firebase_admin.firestore
from PyQt5.QtWidgets import (

QApplication,
QPushButton,
QVBoxLayout,
QWidget,
QLabel,
QComboBox

)

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 28

from PyQt5.QtGui import QFont

class SetGesturewindow(QWidget):

def init (self,username):
self.db=firebase_admin.firestore.client()

self.uname=username
super(). init ()
self.setWindowTitle("Gesture window")
self.resize(850, 400)
Create a QVBoxLayout instance
#welcome label
infolab = QLabel(self)
infolab.setFont(QFont('Ariel', 20))
infolab.move(400, 2)
infolab.setText("Hello"+" "+self.uname)
infolab.show()

infolab=QLabel(self)
infolab.setFont(QFont('Ariel',10))
infolab.move(20,40)
infolab.setText("Available Gestures")
infolab.show()

#Thumbsuplabel
tuplab=QLabel(self)
tuplab.move(20,80)
tuplab.setText("Thumbs Up")
tuplab.show()

ThumbsdownLabel
tdlab = QLabel(self)
tdlab.move(20,140)
tdlab.setText("Thumbs Down")
tdlab.show()

FistLabel
stlab = QLabel(self)
stlab.move(20, 200)
stlab.setText("Fist")
stlab.show()

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 29

Rock OnLabel
rlab = QLabel(self)
rlab.move(20, 260)
rlab.setText("Rock On ")
rlab.show()

#combox
self.cb1=QComboBox(self)
self.cb1.move(150,80)
self.cb1.addItems(["Open Notepad","Open Chrome","Open cmd","Turn on sleep

mode"])
self.cb1.show()
self.cb2 = QComboBox(self)
self.cb2.move(150, 140)
self.cb2.addItems(["Open Notepad", "Open Chrome","Open cmd","Turn on sleep

mode"])
self.cb2.show()
self.cb3 = QComboBox(self)
self.cb3.move(150, 200)
self.cb3.addItems(["Open Notepad", "Open Chrome","Open cmd","Turn on sleep

mode"])
self.cb3.show()
self.cb4 = QComboBox(self)
self.cb4.move(150, 260)
self.cb4.addItems(["Open Notepad", "Open Chrome","Open cmd","Turn on sleep

mode"])
self.cb4.show()

self.bu=QPushButton(self)
self.bu.show()
self.bu.move(130,300)
self.bu.setText("Save")
self.bu.clicked.connect(self.save)

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 30

def save(self):
self.tupt=self.cb1.currentText()
self.tdt=self.cb2.currentText()
self.st=self.cb3.currentText()
self.rt=self.cb4.currentText()
self.db.collection(u'Gests').document(self.uname).set(

{
'Thumbs up':self.tupt,
'Thumbs Down':self.tdt,
'Stop':self.st,
'Rock':self.rt

}
)

if name == " main ":
app = QApplication(sys.argv)
window = SetGesturewindow()
window.show()
sys.exit(app.exec_())

Automate.py

import cv2
import numpy as np
import mediapipe as mp
import tensorflow as tf
import time
import os
import webbrowser
import sel_code

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 31

initialize mediapipe
mpHands = mp.solutions.hands
hands = mpHands.Hands(max_num_hands=1, min_detection_confidence=0.7)
mpDraw = mp.solutions.drawing_utils

Load the gesture recognizer model
model =

tf.keras.models.load_model(r'C:\Users\Aditya\Desktop\Myproject\mets\mp_hand_ges
ture')

Load class names
f = open(r'C:\Users\Aditya\Desktop\Myproject\mets\gesture.names', 'r')
classNames = f.read().split('\n')
f.close()

def change_gest():
pass

def startnewcap(myl):

tupval=''
tdownval=''
fstval=''
ronval=''
for i in myl:

if "Chrome" in i:
indval = myl.index(i)
if indval == 0:

tupval="os.startfile(r'C:\Program
Files/Google/Chrome/Application/chrome.exe')"

if indval==1:
tdownval="os.startfile(r'C:\Program

Files/Google/Chrome/Application/chrome.exe')"
if indval==2:

fstval="os.startfile(r'C:\Program Files/Google/Chrome/Application/chrome.exe')"
if indval==3:

ronval="os.startfile(r'C:\Program
Files/Google/Chrome/Application/chrome.exe')"
elif "cmd" in i:

indval = myl.index(i)
if indval == 0:

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 32

tupval = "os.system(“start cmd”) "
if indval == 1:

tdownval = "os.system(“start cmd”) "
if indval == 2:

fstval = "os.system(“start cmd”) "
if indval == 3:

ronval = "os.system(“start cmd”) "
elif "Notepad" in i:

indval = myl.index(i)
if indval == 0:

tupval = "os.system('notepad')"
if indval == 1:

tdownval = "os.system('notepad')"
if indval == 2:

fstval = "os.system('notepad')"
if indval == 3:

ronval = "os.system('notepad')"
elif "sleep" in i:

indval = myl.index(i)
if indval == 0:

tupval = "os.system('rundll32.exe powrprof.dll,SetSuspendState 0,1,0 ')"
if indval == 1:

tdownval = "os.system('rundll32.exe powrprof.dll,SetSuspendState 0,1,0 ')"
if indval == 2:

fstval = "os.system('rundll32.exe powrprof.dll,SetSuspendState 0,1,0 ')"
if indval == 3:

ronval = "os.system('rundll32.exe powrprof.dll,SetSuspendState 0,1,0 ')"

newcap = cv2.VideoCapture(0)
while True:

Read each frame from the webcam
_, frame = newcap.read()

x, y, c = frame.shape

Flip the frame vertically
frame = cv2.flip(frame, 1)
framergb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

Get hand landmark prediction
result = hands.process(framergb)
print(result)

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 33

className = ''

post process the result
if result.multi_hand_landmarks:

landmarks = []
for handslms in result.multi_hand_landmarks:

for lm in handslms.landmark:
print(id, lm)
lmx = int(lm.x * x)
lmy = int(lm.y * y)

landmarks.append([lmx, lmy])

Drawing landmarks on frames
mpDraw.draw_landmarks(frame, handslms,

mpHands.HAND_CONNECTIONS)

Predict gesture
prediction = model.predict([landmarks])

classID = np.argmax(prediction)
className = classNames[classID]

show the prediction on the frame
cv2.putText(frame, className, (10, 50), cv2.FONT_HERSHEY_SIMPLEX,

1, (0, 0, 255), 2, cv2.LINE_AA)

if className == "thumbs up":
exec(tupval)

if className == "stop":
exec(stval)

if className== "rock":
exec(rval)

if className=="thumbs down":
exec(tdownval)

Show the final output
cv2.imshow("Output", frame)

if cv2.waitKey(1) == ord('q'):

break
if cv2.waitKey(1) == ord('c'):

pass
newcap.release()

cv2.destroyAllWindows()

5. SCREENSHOTS

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 34

5. SCREENSHOTS

`

Screenshot 5.1 Upload Name GUI

Screenshot 5.2 Upload Image GUI

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 35

-

Screenshot 5.3 Upload Image to Firebase

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 36

Screenshot 5.4 Facial Encodings stored

Screenshot 5.5 Gesture GUI

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 37

Screenshot 5.6 Gesture Data stored

Screenshot 5.7 Facial Match Not Found

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 38

Screenshot 5.8: Rock On Gesture

Screenshot 5.9 Fist Gesture

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 39

Screenshot 5.10: Thumbs Up Gesture

Screenshot 5.11 Stop Gesture

6. TESTING

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 40

6. TESTING

6.1 INTRODUCTION TO TESTING

The purpose of testing is to discover errors. Testing is the process of trying to

discover every conceivable fault or weakness in a work product. It provides a way to

check the functionality of components, subassemblies, assemblies and/or a finished

product. It is the process of exercising software with the intent of ensuring that the

Software system meets its requirements and user expectations and does not fail in an

unacceptable manner. There are various types of tests. Each test type addresses a

specific testing requirement.

6.2 TYPES OF TESTING

6.2.1 UNIT TESTING

Unit testing involves the design of test cases that validate that the internal

program logic is functioning properly, and that program inputs produce valid outputs.

All decision branches and internal code flow should be validated. It is the testing of

individual software units of the application .it is done after the completion of an

individual unit before integration. This is a structural testing, that relies on knowledge

of its construction and is invasive. Unit tests perform basic tests at component level and

test a specific business process, application, and/or system configuration. Unit tests

ensure that each unique path of a business process performs accurately to the

documented specifications and contains clearly defined inputs and expected results.

6.2.2 INTEGRATION TES TING

Integration tests are designed to test integrated software components to

determine if they actually run as one program. Testing is event driven and is more

concerned with the basic outcome of screens or fields. Integration tests demonstrate that

although the components were individually satisfaction, as shown by successfully unit

testing, the combination of components is correct and consistent.

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 41

Integration testing is specifically aimed at exposing the problems that arise from the

combination of components.

6.2.3 FUNCTIONALTESTING

Functional tests provide systematic demonstrations that functions tested are

available as specified by the business and technical requirements, system

documentation, and user manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output : identified classes of application outputs must be exercised.

Systems/Procedures: interfacing systems or procedures must be invoked.

Organization and preparation of functional tests is focused on requirements, key

functions, or special test cases. In addition, systematic coverage pertaining to identify

Business process flows; data fields, predefined processes.

6.3 TESTCASES

6.3.1 UPLOADING DATASET

Test
case ID

Test case name Purpose Test Case Output

1 User uploads

image

Use it for

authentic

ation

The user uploads a clear
image of his/her face

Uploaded
successfully

2 User uploads

gestures

Use it for

recognitio

n

The user tries to upload

gestures

Uploaded
successfully

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 42

6.3.2 TEST CASES

Test
case
ID

Test case name Purpose Expected
Results

Actual Result Result

1 Check correct
facial

Authentication

Verify wrong
face

authentication
against stored

encodings

Authentication
Error

Authentication
Denied

Positive

2 Hand Gesture
Check

Check integrity
of gesture

recognition

Gesture is
recognized

Gesture is
recognized

Positive

3 Check wrong
facial
authentication

Check negative
case of
authentication

Access denied Access
granted

negative

4 Check wrong
gesture

To check the
case for wrong
task

Correct task is
performed

Wrong task is
performed

negative

7. CONCLUSION

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 43

7. CONCLUSION & FUTURESCOPE

7.1 PROJECT CONCLUSION

In the present thesis, we have presented a software capable of automating tasks using

gesture recognition. This is a project that incorporates several technologies to create

an efficient software. We identified that numerous technologies/techniques could be

accompanied in this process namely:

• Mediapipe

• Convolutional Neural Network

• Facial Authentication

• Gesture Recognition

Mediapipe stands out in this project providing seamless hand tracking with accurate

landmarks, the proposed project provides authentication and interfaces for the users

which enhances the user experience. The data stored in firebase which is a cloud

service provided by google utilizes NoSQL for storing the facial encodings.

We designed the project so that it can be easily used and deployed in multiple sectors.

The existing system requires improvement and is not really efficient at performing

hand tracking and automation. By harnessing the power of mentioned technologies,

wecan perform automation of computer tasks.

The constraints are met and overcome successfully. The system is designed as like it

was decided in the design phase. The project gives good idea on developing a full-

fledged application satisfying the user requirements.

The system is very flexible and versatile. Validation checks induced have greatly

reduced errors. Provisions have been made to upgrade the software. The application

has been tested with live data and has provided a successful result.

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 44

7.2 PROJECT FUTURESCOPE

The future scope for this project would be boundless with changing times and has

a much broader scope for enhancement and addition of auxiliary features. Some of

which are listed below:

 Storage of data can be improved by migrating from online mode to offline

mode. Although firebase is reliable, network issues might cause

inaccessibility.

 The tasks which can be performed and the type of gestures can be

increased. More tasks can completely change the way user interact with the

computer.

 This project can be implemented or paired with other devices like Mobiles

or IOT. This same idea can also be implemented for different operating

systems.

 The method and accuracy of face authentication can be drastically

improved, this provides better security and efficiency.

 User experience can be improved with better themed and solid looking

GUI and with better approaches.

8. BIBILOGRAPHY

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

CMRTC 45

8. BIBILOGRAPHY

8.1 GITHUB REPOSITORY LINK

https://github.com/Adityamadhira008/Automation-with-mediapipe

https://github.com/motenaresh/Computer-Automation-Using-Gesture-Recognition-
and-Mediapipe

8.2 REFERENCES

[1] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha

Uboweja, Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun

Lee, Wan-Teh Chang, Wei Hua, Manfred Georg, Matthias Grundmann:

MediaPipe: A Framework for Building Perception Pipelines

[2] Rafiqul Zaman Khan and Noor Adnan Ibraheem HAND GESTURE

RECOGNITION: A LITERATURE REVIEW. International Journal of Artificial

Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012Jing-Jing Chen and

Chong-Wah Ngo. Deep-based ingredient recognition for cooking recipe retrieval. In

ACM Multimedia. ACM, 2016.

[3] Summerfield, Mark: Rapid GUI programming with Python and Qt: the definitive

guide to PyQt programming

[4] Prabhu Ramachandran∗ automan: a simple, Python-based, automation framework

for numerical computing

https://arxiv.org/search/cs?searchtype=author&query=Lugaresi%2C%2BC
https://arxiv.org/search/cs?searchtype=author&query=Lugaresi%2C%2BC
https://arxiv.org/search/cs?searchtype=author&query=Nash%2C%2BH
https://arxiv.org/search/cs?searchtype=author&query=McClanahan%2C%2BC
https://arxiv.org/search/cs?searchtype=author&query=McClanahan%2C%2BC
https://arxiv.org/search/cs?searchtype=author&query=Uboweja%2C%2BE
https://arxiv.org/search/cs?searchtype=author&query=Uboweja%2C%2BE
https://arxiv.org/search/cs?searchtype=author&query=Zhang%2C%2BF
https://arxiv.org/search/cs?searchtype=author&query=Zhang%2C%2BF
https://arxiv.org/search/cs?searchtype=author&query=Zhang%2C%2BF
https://arxiv.org/search/cs?searchtype=author&query=Lee%2C%2BJ
https://arxiv.org/search/cs?searchtype=author&query=Lee%2C%2BJ
https://arxiv.org/search/cs?searchtype=author&query=Lee%2C%2BJ
https://arxiv.org/search/cs?searchtype=author&query=Hua%2C%2BW
https://arxiv.org/search/cs?searchtype=author&query=Hua%2C%2BW
https://arxiv.org/search/cs?searchtype=author&query=Grundmann%2C%2BM

COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE

8.3 WEBSITES

1. https://google.github.io/mediapipe/

2. https://pypi.org/project/face-recognition/

3. https://www.riverbankcomputing.com/static/Docs/PyQt5/

4. https://firebase.google.com/docs/firestore

5. https://www.optisolbusiness.com/insight/alphabet-hand-gestures-recognition-using-
media-pipe

6. https://docs.opencv.org/4.x/

CMRTC 46

http://www.riverbankcomputing.com/static/Docs/PyQt5/
http://www.riverbankcomputing.com/static/Docs/PyQt5/
http://www.optisolbusiness.com/insight/alphabet-hand-gestures-recognition-using-
http://www.optisolbusiness.com/insight/alphabet-hand-gestures-recognition-using-
https://docs.opencv.org/4.x/

9. JOURNAL

10 VI June 2022

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 10 Issue VI June 2022- Available at www.ijraset.com

3014 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Computer Automation Using Gesture

Recognition and Mediapipe
Aditya Madhira1, Naresh Mote2, Voruganti Naresh Kumar3

1,2 B.Tech Student, 3Assistant Professor, Dept of CSE, CMR Technical Campus, Hyderabad, Telangana, India

Abstract: Automation is the use of technology to accomplish a task with as little human interaction as possible. In computing,

automation is usually accomplished by a program, a script, or batch processing. Gesture recognition is a topic in computer

science and language technology with the goal of interpreting human gestures. Automation of tasks can be achieved with the

help of “Gestures”. Using Gestures to interact with the computer is a way of achieving Human Computer Interaction with less

utilization of physical devices. Our system consists of four phases: Facial Authentication, Hand Tracking, Gesture Recognition,

Automation

Keywords: Computer Automation, Gesture Recognition, Human Computer Interaction, Mediapipe, Facial Authentication

I. INTRODUCTION

HCI (human-computer interaction) is the study of how people interact with computers and to what extent computers are or are not

developed for successful interaction with human beings. As an interdisciplinary field, HCI attracts researchers, educators, and

practitioners from many different fields. Accordingly, many associations, special interest groups, and working groups focus on HCI

or HCI-related studies [5]. Automation is important because it reduces time, effort and cost, whilst reducing manual errors.

Repetitive tasks can be completed faster. Automating processes ensures high quality results as each task is performed identically,

without human error. MediaPipe is a framework for building pipelines to perform inference over arbitrary sensory data [1]. By

using a pre trained CNN, we are able to classify the gestures and perform the task associated with the gesture. Utilization of

“Gesture Recognition” can aid us to interact with the computer with human gestures. Gestures are expressive, meaningful body

motions involving physical movements of the fingers, hands, arms, head, face, or body with the intent of: conveying meaningful

information or interacting with the environment. They constitute one interesting small subspace of possible human motion. A

gesture may also be perceived by the environment as a compression technique for the information to be transmitted elsewhere and

subsequently reconstructed by the receiver [4]. This will reduce the physical interaction and will provide a faster, easier way of

computer interaction.

II. LITERATURE SURVEY

With over 20 billion electronic devices and around 10 billion people interacting with them, we need to find better ways of

interaction with the devices. Automation can be achieved in multiple ways but gestures and gesture-based projects have been more

utilized like we have seen in various other papers and projects.

1) “Gesture Storm”, a product by Cybernet Systems Company enables weather reporters to use gestures to control the visual

effects displayed in the background. This allows the reporter to display the weather picture in real time and also reduce effort

and time. The idea of gesture can be implemented in other systems for everyone to interact with their own devices.

2) Utilization of “Computer Vision” library OpenCV is popular for hand and palm detection or tracking. This approach has been

implemented by various developers. But with the introduction of Mediapipe which provides quick and efficient methods,

OpenCV methods are convoluted.

3) Python is a high-level language which provides multiple modules which can be utilized to interact with the system. There are

other frameworks which provide automation of tasks but require physical interaction with the computer.

4) Xbox Kinect is a motion sensing device for the Xbox gaming console which uses infrared projectors and detectors to perform

real time gesture recognition for users to play games using their gestures. This was a good example of shifting the computer

interaction method from physical/controller based to gesture based.

5) The Vision based Hand Gestures Interface for Operating VLC Media Player Application "program, in that the nearest K

neighbor algorithm was used see various touches. Features of VLC media player which were driven by hand gestures including

play, as well pause, Full screen, pause, increase volume, and decrease capacity. This program uses the database it contains

various hand gestures and inputs compared with this image stored and appropriately VLC media player it was controlled. The

current application is not very robust recognition phase [7].

http://www.ijraset.com/

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 10 Issue VI June 2022- Available at www.ijraset.com

3015 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

III. OBJECTIVE AND SCOPE OF PROJECT

The main objective of this research is to find non-physical methods of interacting with the computer or to enhance ‘Human

Computer Interaction’ and also to automate mundane computer tasks. The goal of this research is to utilize hand gestures to interact

with computer or to automate certain tasks. The use of gestures to control a device makes it easier to use and automation reduces

time and effort. Gesture recognition is beneficial as it is already implemented in certain aspects of mobile devices, there is more

potential to it and this research demonstrates one of the ways of using gestures to automate tasks.

IV. PROPOSED SYSTEM

Our project is a GUI based software which utilizes multiple technologies/frameworks to automate certain possible tasks by

recognizing the gestures made by the user. Python’s ‘face_recognition’ module is used for facial authentication of the users. It

produces a 128-bit vector consisting of the person’s facial encodings. Users can login or sign up with the facial authentication

system with just their face. A GUI window created with ‘PyQT5’ takes input from the user, it stores the task to be done associated

with the gesture. ‘Cloud Firestore’, a realtime NoSQL cloud-based database is used to store the facial encodings and the gestures,

the data is downloaded as long as there is internet connectivity. Mediapipe is responsible for seamless hand tracking, Mediapipe has

a palm detector that operates on a full input image and locates palms via an oriented hand bounding box and a hand landmark model

that operates on the cropped hand bounding box provided by the palm detector and returns high-fidelity 2.5D landmarks [2], the

user then can make a hand gesture which is recognized by a pre trained CNN model. The model has high accuracy and can classify

well. Finally, the associated task is automated as the gesture is recognized.

Fig. 1. Model Architecture.

V. RESULT AND ANALYSIS

The default mode is login mode where we try to perform facial recognition of the user’s face. The user can start sign up mode by

pressing ‘r’ key on the window. During sign up phase the user is required to upload his/her picture with clear visibility of face. If the

user is a registered user, hand tracking and gesture recognition will be implemented, On the contrary, If the user is not registered,

access will be denied for the user. After a successful authentication, user will be able to assign his/her own tasks to pre-defined

gestures. Hand tracking is performed and user is free to use gestures to automate pre-defined tasks. We observed that the hand

tracking performed by mediapipe is quick and efficient and can run without gpu support. The pre trained model has an accuracy of

90% in classifying the gestures made by the user.

http://www.ijraset.com/

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 10 Issue VI June 2022- Available at www.ijraset.com

3016 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Fig. 2. Facial Authentication Failed Condition.

Fig. 3. Gesture GUI

Fig. 4. Opening Chrome Browser Using Fist Gesture

http://www.ijraset.com/

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 10 Issue VI June 2022- Available at www.ijraset.com

3017 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

Fig. 5. Cloud Firestore

VI. CONCLUSION AND FUTURE SCOPE

Computer Automation is a rapidly growing area of computer science. Engineers are trying to achieve automaton which can reduce

human effort. Automatic reply of emails, webscraping, testing these tasks are being automated and are examples of automation of

tasks. Human Computer Interaction is also a fast-growing field with new inventions and ideas to interact with the computer. Human

computer interaction (HCI) also named Man-Machine Interaction (MMI) refers to the relation between the human and the computer

or more precisely the machine, and since the machine is insignificant without suitable utilize by the human [3]. There are multiple

projects and research journals about multiple ways to interact with a computer. Gesture recognition became popular and is being

utilized as a way to interact with systems. Hand gesture recognition system received great attention in the recent few years because

of its manifoldness applications and the ability to interact with machine efficiently through human computer interaction [3]. Gesture

recognition is valuable and has proven it can be used to control devices. This idea was applied to control basic tasks of a computer

with the powerful and accurate hand tracking capabilities of mediapipe. The demand for reliable personal identification in

computerized access control has resulted in an increased interest in biometrics to replace password and identification (ID) card. The

password and ID card can be easily breached since the password can be divulged to an unauthorized user, and the ID card can be

stolen by an impostor [6]. Hence, facial recognition was used to provide reliable and secure authentication. There is a lot of potential

for future implementations, it can be also deployed for mobile devices or other operating systems. Basic authentication can be added

with facial authentication as to give users more options. More gestures can be added by training a neural net and with proper

technology more tasks can also be automated in the future.

VII. ACKNOWLEDGMENT

We thank CMR Technical Campus for supporting this paper titled with "COMPUTER AUTOMATION USING GESTURE

RECOGNITION AND MEDIAPIPE", which provided good facilities and support to accomplish our work. Sincerely thank to our

Chairman, Director, Deans, Guide and faculty members for giving valuable suggestions and guidance in every aspect of our

Work.

http://www.ijraset.com/

International Journal for Research in Applied Science & Engineering Technology (IJRASET)

ISSN: 2321-9653; IC Value: 45.98; SJ Impact Factor: 7.538

Volume 10 Issue VI June 2022- Available at www.ijraset.com

3018 ©IJRASET: All Rights are Reserved | SJ Impact Factor 7.538 | ISRA Journal Impact Factor 7.894 |

REFERENCES
[1] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha Uboweja, Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Guang Yong, Juhyun

Lee, Wan-Teh Chang, Wei Hua, Manfred Georg, Matthias Grundmann: MediaPipe: A Framework for Building Perception Pipelines, June 2019

[2] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei Tkachenka, George Sung, Chuo-Ling Chang, Matthias Grundmann: MediaPipe Hands: On-device

Real-time Hand Tracking, June 2020

[3] Rafiqul Zaman Khan and Noor Adnan Ibraheem HAND GESTURE RECOGNITION: A LITERATURE REVIEW. International Journal of Artificial

Intelligence & Applications (IJAIA), Vol.3, No.4, July 2012

[4] S. Mitra, and T. Acharya. (2007). “Gesture Recognition: A Survey” IEEE Transactions on systems, Man and Cybernetics, Part C: Applications and reviews,

vol. 37 (3), pp. 311- 324, doi: 10.1109/TSMCC.2007.893280

[5] Zhang, Ping; Benbasat, Izak; Carey, Jane; Davis, Fred; Galletta, Dennis; and Strong, Diane, "Human-Computer Interaction Research in the MIS Discipline"

(2002). Former Departments, Centers, Institutes and Projects. Paper 40

[6] Nazeer, Shahrin & Omar, Normah & Khalid, Marzuki. (2007). Face Recognition System using Artificial Neural Networks Approach. Proceedings of ICSCN

2007: International Conference on Signal Processing Communications and Networking. 420 - 425. 10.1109/ICSCN.2007.350774.

[7] Vallabh Chapalgaonkar, Atharva Kulkarni, Amey Sonawale Media Control Using Hand Gestures: International Journal for Research in Applied Science &

Engineering Technology (IJRASET), Volume 10 Issue IV Apr 2022

[8] Summerfield, Mark: Rapid GUI programming with Python and Qt: the definitive guide to PyQt programming
[9] J.Rekha, J.Bhattacharya, S.majumder Hand Gesture Recognition for Sign Language: A New Hybrid Approach

[10] https://www.riverbankcomputing.com/static/Docs/PyQt5/

[11] https://firebase.google.com/docs/firestore

[12] https://www.optisolbusiness.com/insight/alphabet-hand-gestures-recognition-using- media-pipe

[13] https://docs.opencv.org/4.x/

http://www.ijraset.com/
http://www.riverbankcomputing.com/static/Docs/PyQt5/
http://www.optisolbusiness.com/insight/alphabet-hand-gestures-recognition-using-

It is here by certified that the paper ID : IJRASET44542, entitled

Computer Automation Using Gesture Recognition and Mediapipe

by

Aditya Madhira
after review is found suitable and has been published in

Volume 10, Issue VI, June 2022

in

International Journal for Research in Applied Science &

Engineering Technology

Good luck for your future endeavors

It is here by certified that the paper ID : IJRASET44542, entitled

Computer Automation Using Gesture Recognition and Mediapipe

by

Naresh Mote
after review is found suitable and has been published in

Volume 10, Issue VI, June 2022

in

International Journal for Research in Applied Science &

Engineering Technology

Good luck for your future endeavors

	f5809c1bdab71b692040aaed7f20e2a65e4d8530235f3f7e5c293684314cad37.pdf
	COMPUTER AUTOMATION USING GESTURE RECOGNITION AND MEDIAPIPE
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
	DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (1)
	Mr. V. NARESH KUMAR Dr. A. Raji Reddy
	INTERNAL GUIDE
	NARESH MOTE (187R1A05G6)

	LIST OF FIGURES
	1. INTRODUCTION
	1. INTRODUCTION
	1.1 PROJECT SCOPE
	1.2 PROJECT PURPOSE
	1.3 PROJECT FEATURES

	2. SYSTEM ANALYSIS
	2. SYSTEM ANALYSIS
	SYSTEM ANALYSIS
	2.1 PROBLEM DEFINITION
	2.2 EXISTING SYSTEM
	PYTHON MODULES:
	SELENIUM:
	OpenCV:
	2.2.1 LIMITATIONS OF EXISTING SYSTEM

	2.3 PROPOSED SYSTEM
	2.3.1 ADVANTAGES OF THE PROPOSED SYSTEM
	2.4 FEASIBILITY STUDY
	2.4.1 ECONOMIC FEASIBILITY
	2.4.2 TECHNICAL FEASIBILITY
	2.4.3 BEHAVIORAL FEASIBILITY
	2.5 HARDWARE & SOFTWARE REQUIREMENTS
	2.5.2 SOFTWARE REQUIREMENTS:

	3. ARCHITECTURE
	3. ARCHITECTURE
	3.1 PROJECT ARCHITECTURE
	3.2 DESCRIPTION
	Module 1: FACIAL AUTHENTICATION / FACIAL ENCODING
	Module 2: SETTING OF GESTURES:
	Module 3: HAND TRACKING USING MEDIAPIPE
	Palm Detection
	Hand Landmark Detection
	Module 4: RECOGNITION OF GESTURES
	Pre-Trained CNN
	Module 5: AUTOMATION

	3.3 USE CASE DIAGRAM
	3.4 CLASS DIAGRAM
	3.5 SEQUENCE DIAGRAM
	3.6 ACTIVITY DIAGRAM

	4. IMPLEMENTATION
	4. IMPLEMENTATION
	Main.py
	Upimg.py
	Gestset.py
	Automate.py

	5. SCREENSHOTS
	5. SCREENSHOTS

	6. TESTING
	6. TESTING
	6.1 INTRODUCTION TO TESTING
	6.2 TYPES OF TESTING
	6.2.2 INTEGRATION TES TING
	6.2.3 FUNCTIONALTESTING
	6.3 TESTCASES

	7. CONCLUSION
	7. CONCLUSION & FUTURESCOPE
	7.1 PROJECT CONCLUSION
	7.2 PROJECT FUTURESCOPE

	8. BIBILOGRAPHY
	8. BIBILOGRAPHY
	8.1 GITHUB REPOSITORY LINK
	8.2 REFERENCES
	8.3 WEBSITES

	9. JOURNAL
	10 VI June 2022

	f5809c1bdab71b692040aaed7f20e2a65e4d8530235f3f7e5c293684314cad37.pdf

